
Imperial College London

Department of Electrical and Electronic Engineering

Final Year Project Report 2017

Project Title: Fused Arithmetic Analysis for Efficient Hardware Datapath

Student: Eusebius M. Ngemera

Email: me@eusebius.tech

Course: MEng Electrical & Electronic Engineering

Project Supervisor: Professor George A. Constantinides

Second Marker: Professor Peter Y. K. Cheung

mailto:me@eusebius.tech

ABSTRACT

D
uring high-level synthesis (HLS) more often than not, standard discrete-arithmetic units are
used to synthesise C-like arithmetic programs onto a field-programmable gate array (FPGA).
In this project, I expand on the open-source HLS tool ‘Structural Optimisation of Arithmetic

Programs’ (SOAP) to consider fused arithmetic units.
SOAP rewrites a program to produce a set of equivalent programs that are Pareto-optimal in

resource usage (area), numerical accuracy and latency. In this project, just the area and numerical
accuracy of individual arithmetic expressions are evaluated. The fused units implemented are the 3-
input adder, fused multiply-add (FMA) and constant multiplier, all acting on floating-point numbers.
SOAP’s power of expression transformation is harnessed to expose non-obvious uses of these fused
units.

Improvements achieved in some of the inner expressions of PolyBench and Livermore Loops, for
single-precision floating-point, are up to 1.13× in area without degrading accuracy, and up to 1.4× in
numerical accuracy at an area cost of up to 2.6×. It is shown that the accuracy improvement can be
arbitrarily large under certain conditions.

i

ACKNOWLEDGEMENTS

S
tanding on the shoulders of giants. I would like to thank my exceptional project supervisor,
Professor George A. Constantinides, for his support, guidance and insights. Xitong Gao and his
work on SOAP, have been vital to this project’s accomplishments. Support from Dr Thomas J. W.

Clarke is also very much appreciated.
I would also like to thank my family and friends for their unending encouragement. Last but not

certainly not least, my mother for her many forms of support showing unconditional love.
God’s grace is good.

iii

TABLE OF CONTENTS

Page

List of Tables vii

List of Figures ix

List of Source Codes xi

1 Introduction 1

1.1 High-Level Synthesis . 1

1.2 Introduction to SOAP . 2

1.3 Objective . 2

2 Background 5

2.1 Floating-Point Arithmetic . 5

2.1.1 Accuracy Issues . 6

2.2 Structural Optimisation of Arithmetic Programs (SOAP) 6

2.2.1 Estimating Area . 6

2.2.2 Estimating Error . 8

2.2.3 Expression Transformation . 10

2.2.4 An Example . 10

2.3 Floating-Point Fused Arithmetic . 11

2.3.1 Three-Input Adder . 12

2.3.2 Fused Multiply-Add . 13

2.3.3 Algorithmic Alternatives . 14

2.4 Requirements . 15

3 Analysis and Design 17

3.1 Three-Input Adder . 17

3.1.1 Area . 17

3.1.2 Error . 17

3.1.3 Transformations . 18

3.2 Fused Multiply-Add . 19

v

TABLE OF CONTENTS

3.2.1 Area . 20

3.2.2 Error . 21

3.2.3 Transformations . 21

3.3 Constant Multiplier . 21

3.3.1 Area . 22

3.3.2 Error . 22

3.3.3 Transformations . 22

4 Implementation 23

4.1 Adding Operators . 24

5 Testing 25

5.1 Three-Input Adder . 25

5.2 Fused Multiply-Add . 28

5.2.1 The Single-Use FMA . 29

5.3 Constant Multiplier . 30

6 Results 33

6.1 Single-Precision, Multiple-Use FMA . 33

6.2 Single- and Double-Precision, Single- and Multiple-Use FMA 37

7 Evaluation 39

7.1 Against Varying Precision . 39

7.2 Against SOAP Version 3 . 40

8 Conclusions 43

8.1 Further Work . 43

A User Guide 45

A.1 Installing . 45

A.2 Usage . 46

B Benchmarks 47

B.1 PolyBench . 47

B.2 Livermore Loops . 49

Bibliography 51

vi

LIST OF TABLES

TABLE Page

6.1 Summary of benchmark results for single precision and with the multiple-use implemen-

tation of the FMA . 35

6.2 Aggregate of benchmark results for single and double precision, and for the two types of

FMA units . 38

vii

LIST OF FIGURES

FIGURE Page

2.1 Expressions equivalent to 0.2× (a +b + c +d +e) optimised for single precision (wF = 23) 11

2.2 Patent schematics for a 3-input floating-point adder [1] . 12

3.1 A comparison of the LUT usage of a 3-input addition between implementing with two

2-input adders and one 3-input adder . 18

3.2 A comparison of the absolute error of a 3-input addition between implementing with two

2-input adders and one 3-input adder . 19

3.3 Parameters for FloPoCo’s fixed-point accumulator, LongAcc [2] 20

5.1 Frontiers before and after including the 3-input adder for 3-operand addition at single

precision . 26

5.2 Frontiers before and after including multiple-use FMA for a simple expression at single

precision . 28

5.3 Frontiers before and after including single-use FMA for a simple expression at single

precision . 30

5.4 Frontiers before and after including the constant multiplier, for a π multiplier at single

precision input/output . 31

6.1 Frontiers for fdtd-2d_1 at single precision, and with the multiple-use FMA 36

6.2 Frontiers for jacobi-1d at single precision, and with the multiple-use FMA 36

6.3 Frontiers for 2mm_2 at single precision, and with the multiple-use FMA 37

6.4 Full closure . 37

6.5 Greedy trace . 37

6.6 Frontiers for state_frag at a transformation depth of 3, at single precision and with the

multiple-use FMA . 37

7.1 Frontiers for varying the precision of the frontier of seidel at single precision, and with

the multiple-use FMA . 40

7.2 Frontiers for seidel at single precision, and with the multiple-use FMA, compared to a

matched and modified version 3 of SOAP . 41

ix

LIST OF SOURCE CODES

LISTING Page

1 Kahan Compensated Summation Algorithm pseudo code 15

2 Snippet from the 2mm kernel in PolyBench [3] . 34

xi

C
H

A
P

T
E

R

1
INTRODUCTION

1.1 High-Level Synthesis

In the field of high-performance computing, the graphics processing unit (GPU) has long been the

gold standard for accelerating programs with large amounts of data [4]. However, advancements

in Silicon technology are bringing field-programmable gate arrays (FPGAs) more to the scene. FP-

GAs bring versatility in the form of reconfigurable digital hardware allowing them to be used as

accelerators of floating-point arithmetic, customised to the desired application.

However, FPGAs have been traditionally configured using cumbersome hardware description

languages like VHDL1 and Verilog on a gate level or a register-transfer level (RTL) whilst GPUs have

tended to be significantly easier to program. High-level synthesis (HLS) brings an algorithmic level

to hardware design. Manohar et al. [5] describe HLS tools as handling the micro-architecture and

transforming “untimed or partially timed functional code into fully timed RTL implementations,

automatically creating cycle-by-cycle detail for hardware implementation.”

HLS has given hardware designers the abstraction needed to easily create hardware from C-like

code and focus on algorithmic optimisations rather than low-level implementation details. HLS has

also brought software developers to hardware design due to lower learning curves when coming from

software programming. However, designers are “limited to the set of numerical primitives provided

by HLS vendors” as noted by Thomas in [6] while investigating a method for automatically creating

high-performance floating-point function approximations.

FPGAs are effectively reconfigurable alternatives to application-specific integrated circuits (ASICs)

which are fixed—and hence seldom used as application accelerators—but provide the best power

efficiency. However, their development succumbs to longer periods and with higher costs.

1Very High Speed Integrated Circuit (VHSIC) Hardware Description Language

1

CHAPTER 1. INTRODUCTION

1.2 Introduction to SOAP

‘Structural Optimisation of Arithmetic Programs’ (SOAP) is an open-source, Python-coded tool

by Gao et al. [7–9] that optimises three key constraints for a hardware designer as part of a high-

level synthesis flow. SOAP automatically restructures numerical C programs to optimise for latency,

numerical accuracy and resource usage when synthesised onto an FPGA. Current HLS tools cannot

safely make these rewrites because they do not consider the numerical correctness and performance

implications of such restructuring.

An example of restructuring that SOAP is more capable of is loop pipelining since it considers

inter-iteration dependencies amongst variables. The design space of equivalent structures of a

program is efficiently analysed to produce a three-dimensional frontier of Pareto-optimal, candidate

restructured programs. This provides a hardware designer with the freedom to trade off the three

properties—latency, accuracy and resource usage—depending on the hardware’s application and

design constraints.

1.3 Objective

With version 2 of SOAP, the current one, the arithmetic units that can be synthesised are the 2-input

adder/subtractor and 2-input multiplier of either fixed-point or floating-point numbers, as well as

more advanced floating-point operations, namely division and exponentiation.

This project aims to discover and analyse improvements that can be made by fused arithmetic

units during high-level synthesis through expanding the capabilities of SOAP. Namely, the fused

arithmetic units in this project are the floating-point 3-input adder, fused multiply-add (FMA) and

constant multiplier. This project limits its scope to exclude latency, and only analyse area in the form

of the number of lookup tables (LUTs) needed and numerical accuracy in the form of maximum

absolute error. There is also a focus on individual, nested expressions as opposed to entire programs.

Quantitatively, the objective is to improve the area and absolute error of the set of Pareto-optimal

equivalent expressions that SOAP discovers. This set should contain one or more candidates that

have been transformed with at least one fused arithmetic unit.

In the process, this project aims to answer some questions: What is the extent of changes to

the frontier of the design space, if any, with these fused units? Are any increases in duration of the

expanded search for equivalent expressions worthwhile? How does the approach of fusing arithmetic

units compare to that of varying precision in order to achieve better area or accuracy?

2

1.3. OBJECTIVE

Structure of the Report

Chapter 2 gives a background to floating-point arithmetic, SOAP and fused arithmetic units. Chapter

3 covers the modelling of the fused units. Chapter 4 provides details of the implementation. Chapter

5 covers verification of the functional correctness of each fused arithmetic unit’s implementation.

Chapter 6 gathers and explains results from benchmark expressions.

Chapter 7 compares the changes due to the fused arithmetic units to current design-space search

methods of improving area and numerical accuracy. Chapter 8 concludes and discusses further work.

A user guide to installing and using the implementation is included in Appendix A.

3

C
H

A
P

T
E

R

2
BACKGROUND

2.1 Floating-Point Arithmetic

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) [10] defines computation for floating-

point numbers. The standard describes not only the data format but also surrounding aspects such

as rounding rules and exception handling. A binary (base 2) floating-point number x is represented

as in equation 2.1. S is a single bit that determines the sign of the number to be either positive or

negative. The mantissa, or significand, is the number 1.F , which lies in the range [1,2) and contains

the fractional binary digits F . The exponent E is represented as a non-negative integer from which a

bias is subtracted.

x = (−1)S ×1.F ×2E−bias(2.1)

The sign bit S, exponent E and fraction F are packed together in that order. Hereafter, wE is

defined as the width in number of bits of the exponent E and wF is defined as that of F . Also,

q := E −bias is the true exponent of x.

The value of the exponent bias is dependent on the exponent width: bias := 2wE−1 −1. The true

exponent q lies in the range of integers [−(2wE−1 −2),2wE−1 −1] ≡ [−(bias−1),bias]. The range of

q excludes the boundaries of E , i.e. E = 0 and E = 2wE −1. These boundary exponents are used to

represent±0,±∞, NaN’s (not a number) and subnormal numbers. Subnormal number representation

allows numbers in the underflow interval around zero: (−2−(2wE −2),2−(2wE −2)). Subnormal numbers

are not considered in SOAP nor this project as explained in section 2.2.1.1.

IEEE defines the standard binary precisions half, single, double, quadruple and octuple ranging

from 16 to 256 bits in total width. The most common floating-point formats are the 32-bit single pre-

cision (wE = 8, wF = 23) and the 64-bit double precision (wE = 11, wF = 52) binary representations.

5

CHAPTER 2. BACKGROUND

Floating-point trades off range for precision when compared to standard fixed-point representa-

tion. Floating-point can give a higher range that is dynamic but at the cost of exponentially increasing

round-off error due to the difference between consecutive numbers amplifying with the scale.

2.1.1 Accuracy Issues

A good example of an accuracy issue is when summing a sequence of non-negative floating-point

numbers. The summation in equation 2.2 is from Higham [11]. The sequence of summed numbers is

in a polynomially decreasing order and Higham notes that reversing the order so that the sequence is

increasing makes the error 650 times smaller.

10,000∑
n=1

n−2(2.2)

When sequences contain both negative and positive numbers, generally there are still accuracy

issues even with summing in order of magnitude. Higham suggests that the negative numbers should

be summed separately to the positives and then the two sums combined: Sn = S−+S+. This has

been an introduction to floating-point accuracy issues and the matter continues to be discussed

throughout the rest of the report.

2.2 Structural Optimisation of Arithmetic Programs (SOAP)

Gao et al. [7, p. 2] note that SOAP has been the first tool to “perform trade-off optimisation between

numerical accuracy and resource usage by varying the structure of arithmetic programs.” SOAP

relies on knowledge of the input variable’s upper and lower bounds to guide restructuring towards

optimality.

This project aims to set the foundation for incorporating fused arithmetic units into the current

version of SOAP by first building on version 1 of SOAP. Versions 2 and 3 added the ability to analyse

full C programs with loops, instead of individual expressions, as well as analysing and optimising for

latency. Version 1 of SOAP is still valid and relevant to this project as it has the core ability of rewriting

arithmetic expressions to optimise for area and accuracy.

The input to version 1 of SOAP is an arithmetic expression and the range of values for its variables,

i.e. the minimum and the maximum of possible values. The output is a set of expressions that are

equivalent in real arithmetic and that are Pareto-optimal in area (number of LUTs) and maximum

absolute error.

This section covers how the area and error are estimated, how the expression is transformed and

an example is given.

2.2.1 Estimating Area

The target platform in version 1 of SOAP is Xilinx’s Virtex6 XC6VLX760 FPGA. Xilinx [12] describes

their FPGA device family as offering “the best solution for addressing the needs of high-performance

6

2.2. STRUCTURAL OPTIMISATION OF ARITHMETIC PROGRAMS (SOAP)

logic designers”. The basic element of an FPGA is the configurable logic block (CLB) with slices which

usually contain lookup tables (LUTs) and flip-flops. In SOAP, area is measured in terms of the number

of LUTs since they are the core component to implementing Boolean functions and digital logic. An

n-input LUT can implement a Boolean equation of n variables.

To calculate the number of LUTs required, sub-expressions are given unique labels but main-

taining that the same operation in different parts of the expression with the same parameters and

inputs get the same label. From this collection of labels, unique operators required are counted and

multiplied by the number of LUTs required for the matching operator.

Because value intervals are known throughout the datapath, the exponent size of a component

can be set to one such that no overflow occurs (at neither its inputs nor its output), as opposed to

that set by the final output value range. For example, if an addition’s inputs nor output do not need

any more than 5 bits for the exponent size then an adder with an exponent size wE = 5 is synthesised.

This need for operators to be specific to a particular exponent and mantissa size requires a capable

floating-point core generator, and this is where FloPoCo comes in.

2.2.1.1 FloPoCo

FloPoCo is a software tool by Dinechin et al. [13] that generates arithmetic cores. Its developers note

that “all FloPoCo operators are fully parametrised in precision, so that an application may use just the

precision it needs, and accurate to the last bit, so that wires don’t carry meaningless noise.” FloPoCo

provides a VHDL hardware description of a customised floating-point arithmetic unit, for example it

can generate a floating-point multiplier of single precision (wF = 23) with an exponent size wE of 5

instead of the standard 8 bits. FloPoCo version 2.5.0 is used in this project.

FloPoCo’s developers also demonstrated their generator “ranking higher than the results obtained

by FPLibrary 2 and not far from the operators generated with Xilinx CoreGen 3”[2]. Crucially, they

note that the generate VHDL code is portable and target independent, while Xilinx’s CoreGen only

works with their own line of FPGAs. However, FloPoCo does not support subnormal floating-point

numbers because they are viewed as a rare edge case.

Given the aforementioned VHDL file from FloPoCo, Xilinx’s ISE Design Suite (version 14.7) is used

to synthesise the VHDL file to produce a device utilisation summary—specific to the Virtex-6 target

platform—which includes the number of LUTs needed before place-and-route. Place-and-route

is the process of mapping the circuit description to the FPGA’s physical resources. In tests, Gao et

al. in [7, p. 8] note that SOAP’s area estimation is a 6.1% over-approximation and the worst case

over-approximation is 7.7% of the actual number of LUTs.

The SOAP installation includes pre-synthesised and precomputed values for the number of LUTs

for the floating-point adder and multiplier of varying wE and wF , which means FloPoCo and Xilinx’s

ISE Design Suite are not needed during runtime.

7

CHAPTER 2. BACKGROUND

2.2.1.2 Exponent Width Required

Given a value interval [x1, x2], the range of exponents [minq,max q] needs to be determined. Then

given this range. the minimum exponent size needed to hold the interval of exponents is calculated.

Let x be one of the (non-zero) interval bounds. The exponent of x is qx = ⌊
log2(|x|)⌋. The minimum

exponent size wE required to include a true exponent q is given in equation 2.3. These arise from

knowing the range of valid true exponents for a given exponent width: q ∈ [−(2wE−1 −2),2wE−1 −1].

(2.3) wE =


⌈
1+ log2(2−q)

⌉
, if q ≤ 0⌈

1+ log2(1+q)
⌉

, otherwise

It was discovered that in the implementation of version 1 of SOAP, only the upper bound of the

exponent was evaluated and used to determine the minimum exponent size. SOAP was updated to

also check the lower bound and hence use the maximum of the two computed exponent sizes.

It was also observed that when a value interval included zero then SOAP would give the minimum

synthesisable exponent size of 5. Generally, this is not correct as a non-singular interval including

zero means the lower exponent bound is effectively minq (due to infinitesimal non-zero numbers to

be represented), which is circularly dependent on wE . IEEE defines that the standard exponent size

wE for a non-standard wF needs to match that of the next-up standard wF [10]. This is illustrated in

equation 2.4.

(2.4) wE =



halfwE = 5, if 0 < wF ≤ halfwF = 10

singlewE = 8, if 10 < wF ≤ singlewF = 23

doublewE = 11, if 23 < wF ≤ doublewF = 52

quadruplewE = 15, if 52 < wF ≤ quadruplewF = 112

octuplewE = 19, if 112 < wF ≤ octuplewF = 236

2.2.2 Estimating Error

Numerical accuracy is determined by estimating the maximum absolute error. An interval represent-

ing possible floating-point values of an input variable propagates through the expression’s datapath.

This results in a floating-point interval for the output values of the expression. From bottom to top,

the ranges of absolute error of sub-expressions are evaluated. An absolute error range is in the form

of an interval of real (rational) numbers. The absolute error applies to the interval bound with the

largest magnitude.

In this project, ε : Expression →R is defined to be a function that gives the maximum magnitude

of the absolute error of an expression. The function δ : IntervalF→R is defined to give the maximum

magnitude of the round-off error for an interval of floating-point numbers, where the set F is the

set of possible floating-point numbers for a particular wE and wF . These definitions are slight

8

2.2. STRUCTURAL OPTIMISATION OF ARITHMETIC PROGRAMS (SOAP)

simplifications of the implementation as both ε and δ output IntervalR, an interval that usually spans

between the negative and positive of the same absolute value.

δ([x1, x2]), the maximum round-off error of floating-point interval [x1, x2] ∈ IntervalF is as given

in equation 2.6. If evaluating the round-off error of a constant in the expression then equation 2.5 is

used instead, where fl(x) provides the floating-representation of x after rounding. Unit of the last

place (ulp) is the weight of the least significant bit in the mantissa. Muller [14] notes that ulp can have

different interpretations but this project continues the definition that SOAP uses in equation 2.7.

δ(x) = x −fl(x), x ∈R(2.5)

δ([x1, x2]) = 1

2
×ulp (max(|x1|, |x2|))(2.6)

ulp(x) = 2−wF ×2(Ex−bias) = 2qx−wF(2.7)

The 2-input addition (a +b) is taken as an example and assuming its variables a,b ∈R have an

associated error from their real values, ∆a and ∆b respectively. Evaluations as shown in equation 2.8

reveal the error of the operation is the sum of the input errors added with the error from rounding-

off the result. Given x to be a real number, fl(x) is its floating-point representation after rounding:

fl :R→ F.

fl((a +∆a)+ (b +∆b))

=(a +b)+ (∆a +∆b +δ([a +b +∆a +∆b]))
(2.8)

The maximum absolute error can be expressed as in equation 2.9. The floating-point interval

[a+b+∆a +∆b] from equation 2.8 is written simply as [a+b]. The implementation in SOAP performs

the floating-point interval addition [a]+ [b] = [a +b] ∈ F by emulating a particular precision and

therefore including ∆a and ∆b as explained in chapter 4. δ([a +b]) represents the round-off error of

the floating-point interval arising from expression (a +b).

ε(a +b)

=ε(a)+ε(b)+δ([a +b])
(2.9)

Evaluating the error of 2-input multiplication in equation 2.10 reveals its maximum absolute

error can be expressed as in equation 2.11.

fl((a +∆a)× (b +∆b))

=(a ×b)+ (∆a ×∆b +∆a ×b +∆b ×a +δ([(a +∆a)× (b +∆b)]))
(2.10)

ε(a +b)

=ε(a) ·ε(b)+ε(a) ·max(|b|)+ε(b) ·max(|a|)+δ([a ×b])
(2.11)

9

CHAPTER 2. BACKGROUND

2.2.3 Expression Transformation

Rules of real arithmetic are used to restructure expressions. These are associativity, distributivity and

commutativity as illustrated in equation sets 2.12, 2.13 and 2.14 respectively.

(a +b)+ c ⇐⇒ a + (b + c)

(a ×b)× c ⇐⇒ a × (b × c)
(2.12)

a +b ⇐⇒ b +a

a ×b ⇐⇒ b ×a
(2.13)

a × (b + c) ⇐⇒ (a ×b)+ (a × c)(2.14)

Furthermore, reduction rules in equation set 2.15 help to maintain a unique set of expressions.

An expression with inputs that are all constants is evaluated to a value, for example (2∗3) ⇒ 6.

a ×1 ⇒ a

a +0 ⇒ a
(2.15)

SOAP recursively gathers a set of transformed expressions until the depth limit is reached or there

are no new additions to the set. Expressions can be too complex to perform a full transitive closure as

memory runs out. Gao et al. [7, p. 7] conclude with a greedy trace to efficiently generate equivalent

expressions on the Pareto frontier. However, in this project, the aim is to evaluate full closures unless

otherwise stated.

2.2.4 An Example

The expression and interval ranges in equation 2.16 from the seidel benchmark kernel (introduced

in chapter 6) are analysed with SOAP.

0.2× (a+b + c +d +e)

a ∈ [0,1],b ∈ [0,1],c ∈[0,1],d ∈ [0,1],e ∈ [0,1]
(2.16)

42 equivalent expressions are discovered and all of these occupy just four points in the plot in

figure 2.1, i.e. there are only four unique area–error points in the design space. The restructured

expression ((((d + e)+b)+ (a + c))×0.2) is discovered to achieve lower absolute error whilst using

the same number of LUTs. This is solely due to balancing the additions such that error at any of the

inputs propagates through at most 3 adders instead of 4 originally. The expression ((((a + c)+b)×
0.2)+((d +e)×0.2)) which further balances the operators, has the lowest absolute error but at an area

cost due to the additional multiplier now needed. Expression (((((a +b)+ c)+d)×0.2)+ (0.2×e) is in

the mid-right of the plot and is non-optimal because it adds a multiplier and ends up only partially

balancing the expression.

The term Pareto frontier refers to the set of expressions that are Pareto-optimal. In multi-objective

optimisation—as here with area and error—there can be conflicting points where no one point can

10

2.3. FLOATING-POINT FUSED ARITHMETIC

be said to be worse than any other. For example, the expression in the bottom right improves the

absolute error of that in the bottom left but with a worse area. However, the expression in the top left

is definitively worse than that in the bottom left because it maintains the same area but degrades the

error.

2050 2100 2150
Area (Number of LUTs)

2.50

2.55

2.60

2.65

2.70

2.75

A
bs

ol
ut

e
E

rr
or

×10−7

((((d + e) + b) + (a + c)) * 0.2)

((((a + c) + b) * 0.2) + ((d + e) * 0.2))

seidel: 0.2× (a + b + c + d + e)

original expression
Equivalent expressions (0.45s)

Figure 2.1: Expressions equivalent to 0.2× (a +b +c +d +e) optimised for single precision (wF = 23)

2.3 Floating-Point Fused Arithmetic

Fused arithmetic units aim to provide improvements in latency, accuracy and resource usage by

eliminating redundant circuitry present in standard, discrete arithmetic, floating-point core based

implementations. Most of this redundancy can arise from normalisation and rounding stages at

the end of floating-point arithmetic which adds area, increases latency and reduces accuracy when

inside a datapath [15].

Swartzlander et al. implemented a single-precision radix-2 Fast Fourier Transform (FFT) butterfly

using two fused arithmetic units: a floating-point fused multiply-add and a floating-point fused

add-subtract [16] [17]. The result was an improvement in latency of 15% (1.18×) and a reduction of

39% (1.64×) in area (in a 45nm process) compared to implementing using conventional two-input

floating-point adders and multipliers. The numerical result of the fused butterfly unit was also more

accurate because of fewer intermediate rounding operations. Improvements of up to 3.3× in latency

and 19.7× in area (90nm technology) are made on an application-specific integrated circuit (ASIC)

by Smith et al. [15] and Langhammer [18].

Langhammer [18] proposes fusing the entire datapath by optimising at the “expression and not

11

CHAPTER 2. BACKGROUND

operator level; this is achieved by reducing each operator into denormalization, operation, and

normalization stages, and then only using the minimal combination of stages at any node. Exception

handling is also done in parallel with the datapath, rather than being applied at each node.” He notes

that this results in a typical 50% logic, latency, and power reduction.

2.3.1 Three-Input Adder

One of the basic fused arithmetic units is a floating-point adder with three operands and performs

an addition/subtraction without intermediate result truncation: fl(a ±b ± c). Given x to be a real

number, fl(x) is its floating-point representation after rounding. This results in rounding errors

getting approximately halved [11], compared to executing fl(fl(a ±b)±c), i.e. two distinct operations.

Fukumura et al. hold a patent with the schematic in figure 2.2 [1]. The pre-processing circuit

aligns the 3 significands as well as determining the maximum exponent difference. The normalization

circuit ensures the final result has one leading 1. During addition, there may be two leading 1’s and

during subtraction there may be leading 0’s in the significand of the result. Addition implemented

with one 3-input adder normalises and truncates the result once thus reducing the error and achieving

a shorter critical path than with two discrete 2-input adders.

Figure 2.2: Patent schematics for a 3-input floating-point adder [1]

The expression in equation 2.17, which always equals −2−k in real arithmetic, will now be anal-

ysed. The value of k is set such that the difference between exponents is large enough so that the

12

2.3. FLOATING-POINT FUSED ARITHMETIC

last bit of (1+2−k) cannot be stored in the mantissa, i.e. k > wF (assuming no use of subnormal

floating-point numbers).

(2.17) 20 −2−k −20 =−2−k

There are two possible orders of computation using 2-input adders as illustrated in equations

2.18 and 2.19.

fl
(

fl
(
20 −2−k

)
−20

)
= fl

(
20 −20)= fl(0)(2.18)

fl
(

20 +fl
(
−2−k −20

))
= fl

(
20 −20)= fl(0)(2.19)

Given this order of addition without commutativity, none of the possible uses of the 2-input adder

give a correct answer. The implication of this can be when comparing around zero. Using 2-input

adders results in making an equal-to-zero comparison whereas using the 3-input adder would have

the correct comparison result of less-than-zero. This can cause a finite-state machine to deviate

from the expected path, and perhaps even result in an infinite loop in some applications. Numerical

instability to a control system would render it unstable. When the expression in equation 2.17 is

computed using a 3-input adder then there is no error due to intermediate rounding, and similarly

for any multiple-operand floating-point adder with more than 2 inputs.

(2.20) fl
(

20 −2−k −20
)
= fl

(
−2−k

)

2.3.2 Fused Multiply-Add

Another example of a fused arithmetic unit is the fused multiply-add (FMA), also known as a multiply-

accumulate (MAC). An FMA performs multiplication followed by addition/subtraction without

intermediate result truncation: (a ×b)± c. Rounding errors can get approximately halved [11]. The

inner product between two vectors x and y, both of length n, can be expressed as in equation 2.21.

(2.21) x ·y =
n∑

i=1
xi yi = x1 y1 +x2 y2 + . . .+xn yn

This result can be calculated with n rounding errors instead of 2n − 1 arising from the two

operations (multiplication and addition) at each iteration pass. Any applications dominated by

a form of an inner product will reap benefits from using FMAs. Inner products dominate matrix

multiplications. Some examples of applications that could see significant program transformations

and hence benefit from FMA units include optimisation, digital filtering as well as artificial neural

networks.

Additionally, FMAs can be used to compute an exact representation of the product between two

floating-point numbers. Higham et al. demonstrates that given two floating-point numbers, x and y ,

13

CHAPTER 2. BACKGROUND

the exact representation of their product, x · y , can be computed as shown in equation set 2.22 [11].

â = fl(x · y)

b̂ = fl(x · y − â)

x · y = â + b̂

(2.22)

b̂ has to be computed with only one rounding-off error and hence can only be done by a fused

arithmetic unit performing a multiplication followed by addition/subtraction.

2.3.2.1 Pitfalls

If an expression originally is (a ×b)+ (c ×d) then there are two equivalence possibilities using an

FMA unit:

fma(a, b, fl(c ×d))

fma(c, d , fl(a ×b))
(2.23)

fma(x, y, z) is a fused multiply-add unit performing fl(x × y + z). Which of the two multiplications

should be computed and rounded first? This is where FMAs may come with a potential danger[11,

p. 47].

In solving the quadratic f (x) = ax2 +bx + c for x, the square root of the discriminant,
p

b2 −4ac ,

needs to be computed. With correctly rounded arithmetic, monotonicity in rounding makes sure

fl(b2)−fl(4ac) ≥ 0 and hence the computed discriminant will always be a non-negative number for

all non-negative b2 −4ac in real arithmetic. On an FMA however, fl(fl(b2)−4ac) would be computed

instead and might break the monotonicity relation. This could happen, for example, if b2 = 4ac in

real arithmetic and fl(b2) < b2 resulting in fl(b2) < 4ac.

As Kahan [10, p. 5] puts it, “therefore Fused MACs cannot be used indiscriminately; there are a few

programs that contain a few assignment statements from which Fused MACs must be banned." This

is where SOAP has the potential, at its core, able to analyse equivalent expressions for improvements

in latency, accuracy and resource usage. When analysing the aforementioned quadratic equation

discriminant, SOAP should be able to determine errors such as invalid square rooting of a negative

number in the quadratic equation discriminant above as well as choosing the best way to perform

FMA in evaluating (a ×b)+ (c ×d) to reduce rounding error.

2.3.3 Algorithmic Alternatives

Apart from fused arithmetic units and increasing precision, numerical accuracy can be improved in

other ways. For example, Kahan’s compensated summation algorithm [19] reduces round-off error

when summing a sequence of floating-point numbers by using a compensation at each iteration.

The algorithm keeps a running compensation of low-order bits. Pseudo code for the algorithm is

included in listing 1 and comes from [20, p. 791].

14

2.4. REQUIREMENTS

1 sum = 0
2 compensation = 0
3

4 for i = 1:n
5 temp = sum
6 y = x[i] + compensation
7 sum = temp + y
8 compensation = (temp - sum) + y
9 end

Listing 1: Kahan Compensated Summation Algorithm pseudo code

The algorithm reduces the worst-case error from O(n) to O(1), i.e. now independent of the input

size. What should also be noted is that there are now 4 additions/subtractions at each iteration

instead of just 1, resulting in more resource usage. This algorithm could be avoided entirely by using

higher precision arithmetic units during computation.

2.4 Requirements

Continuing on, the main project aims established are:

• Incorporate at least one fused arithmetic unit into SOAP’s models

• Verify presence of fused arithmetic units in equivalent expressions

• Report on changes to the Pareto frontier for various benchmark programs

• State conditions that make the fused unit(s) advantageous

15

C
H

A
P

T
E

R

3
ANALYSIS AND DESIGN

3.1 Three-Input Adder

Out of the FloPoCo units available to synthesise, the FPAdder3Input unit is the only one with the

the functionality needed.

3.1.1 Area

Figure 3.1 shows a comparison of the number of LUTs needed to implement 3-operand addition

using either two 2-input adders or one 3-input adder, for varying mantissa size as well as exponent

size. It is evident that the 3-input adder does not save LUT usage. This can be attributed to the barrel

shifter, a digital circuit to shift data by a number of bits using only combinatorial logic. As previously

seen in the schematics in figure 2.2, a pre-processing circuit acts on the 3 inputs to align them and

this needs a barrel shifter. However, barrel shifters generally have circuitry complexity that increases

exponentially with the size of the input, as evident by the exponential increase when varying the

mantissa size. On the other hand, the exponent size has little to no effect in the LUT usage of both

adders.

3.1.2 Error

Continuing on from the principles set in section 2.2.2, the maximum absolute error for a 3-input

adder is modelled as in equation 3.1. add3(a,b,c) is equivalent to (a +b + c) in real arithmetic. It

should be noted that this model is the same as that using two 2-input addition but without any

17

CHAPTER 3. ANALYSIS AND DESIGN

E
xp

on
ent

size
(b

its)

6
8
10
12
14

Mantissa size (bits)
20 40 60 80 100

A
re

a
(N

u
m

b
er

o
f
L
U

T
s)

0

2000

4000

6000

8000

10000

Area Usage (LUT Count) for 3-operand FP Addition: Fused vs Discrete

3-input FP Adder

Two 2-input FP Adders

Figure 3.1: A comparison of the LUT usage of a 3-input addition between implementing with two
2-input adders and one 3-input adder

intermediate round-off error, δ([a +b]) for example.

ε (add3(a,b,c))

=ε(a)+ε(b)+ε(c)+δ([a +b + c])
(3.1)

From the error model, figure 3.2 is obtained which illustrates the error improvement for varying

mantissa size. There’s exponential decay of absolute error with increasing mantissa size, for both

adders, so the difference between them is also exponentially decaying. This difference is due to

the lack of intermediate round-off error with a 3-input adder. The exponential decay is as expected

because round-off error decays exponentially with wF .

In a standard summation of n numbers using the 2-input adder, there will be n −1 operations

and hence n−1 round-off errors. With a 3-input adder, the number of operations is
⌊n

2

⌋
and therefore

effectively halves the number of round-off errors.

3.1.3 Transformations

To allow 3-operand expressions to be restructured to use the 3-input adder, transformation rules need

to be added to SOAP. These are illustrated in equation set 3.2. Equation 3.3 shows the commutativity

rule.

(a +b)+ c ⇐⇒ add3(a,b,c)

a + (b + c) ⇐⇒ add3(a,b,c)
(3.2)

add3(a,b,c) ⇔ add3(a,c,b) ⇔ add3(b, a,c) ⇔ add3(b,c, a) ⇔ add3(c, a,b) ⇔ add3(c,b, a)(3.3)

18

3.2. FUSED MULTIPLY-ADD

10 12 14 16 18 20
Mantissa size (bits)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

A
bs

ol
ut

e
E

rr
or

Error for 3-operand FP Addition: Fused vs Discrete

Two 2-input FP Adders
One 3-input FP Adder

Figure 3.2: A comparison of the absolute error of a 3-input addition between implementing with two
2-input adders and one 3-input adder

3.2 Fused Multiply-Add

FloPoCo’s DotProduct unit is the only unit available that can be used to implement FMA. The design

features a multiplier, with its non-truncated result fed into a large fixed-point accumulator. This

design is ideal in a loop because the full result (that might possibly be very wide) can be stored in

its entirety. The concept of a dot-product operator that internally uses fixed-point has also been

described outside of FloPoCo by Kulisch in [21] as well as Lopes et al. in [22].

Figure 3.3 from Pasca [2] illustrates the parameters for the long accumulator. MaxMSBX is the

exponent of the highest most significant bit (MSB) of the inputs into the accumulator, MSBA and

LSBA are the exponent of the most- and least-significant bit (LSB) of the accumulator. Parameter

LSBA effectively sets the accuracy of the accumulation as it determines the level of truncation. The

condition MSBA ≥ MaxMSBX > LSBA has to be true. Pasca [2, p. 121] notes that other implementa-

tions of a hybrid fixed- and floating-point accumulator in related work are more complex and tend to

not as scale well with higher precisions.

In using FloPoCo’s dot product unit it is observed that the sum has to be less than 2MSBA . The

parameters are set as in equation set 3.4. The MSB’s have one bit added on to hold the leading 1

in floating-point representation and an additional bit to allow 2’s complement representation of

negative numbers. These parameters assume continuous accumulation and hence the aim is to hold

the possible sum in its entirety. MaxMSBX depends on the maximum of the exponents to be added

on which will either be the exponent of (a ×b) or that of c.

MaxMSBX = 2+max
(maxqa×b , maxqc

)
MSBA = max

(
2+ maxq(a×b)+c ,MaxMSBX

)
LSBA = min

(minqa×b , minqc
)−wF

(3.4)

Assuming the FMA is for a single-use (without a continuous sum), the accumulator is set to

19

CHAPTER 3. ANALYSIS AND DESIGN

10.1 A fast and accurate accumulator 121

L
o
n
g
A
c
c
2
F
P

L
o
n
g
A
c
c

wA

shift value

mantissa

carry in

MaxMSBX − LSBA + 1

MaxMSBX

exponent

wE wF

sign

mantissa signexponent

fixed-point sum

registers

w′F

wA

w′E

carry propagation

LZC + shifter

Input Shifter

1’s complement

2’s complement

Figure 10.3 The proposed accumulator (top) and post-normalisation unit (bottom).

The shifters now only concern the summand (see Figure 10.3), and, being combinatorial, can
be pipelined as deep as required by the target frequency.

As seen on Figure 10.3, the accumulator stores a two’s complement number while the sum-
mands use a sign/magnitude representation, and thus need to be converted to two’s complement.
This can be performed without carry propagation: If the input is negative, it is first complemented
(fully in parallel), then a 1 is added as carry-in to the accumulator. All this is out of the loop’s crit-
ical path, too.

10.1.2 Parameterisation of the accumulator

Let us now introduce, with the help of Figure 10.4, the parameters of this architecture.

000

0 0000

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

000 0 0 0 0 00 0 0 0 0

1

1

1 1 0 00

1

1 1

1 1

1

1 1 1 1 1 1

1111

100 1 1 1 1 1 1 101010 0

0000 11111

wA = MSBA − LSBA + 1

Accumulator

wF + 1 LSBA = −12MaxMSBX = 8MSBA = 16

fixed point

Summands (shifted mantissas)

Figure 10.4 Accumulation of floating-point numbers into a large fixed-point accumulator

121

Figure 3.3: Parameters for FloPoCo’s fixed-point accumulator, LongAcc [2]

accommodate only the larger of the two inputs when they’re both at their smallest magnitude. In this

worst-case, note that the accumulator has an extra bit at the end that is there to ensure the result has

a correct least-significant bit, i.e. a carry from the lower bits and into the result’s LSB is possible.

LSBA = max
(minqa×b , minqc

)−wF −1(3.5)

3.2.1 Area

To get an estimate of the number of LUTs for an FMA, its accumulator parameters have to be

determined. After this, two FloPoCo units are generated, DotProduct (which includes LongAcc) and

LongAcc2FP. The latter unit is needed to convert the accumulator’s fixed-point representation back

to floating-point.

The FMA with 3 parameters in addition to wE and wF presents a challenge in gathering area

information. With the adders and multipliers, there are approximately 100×10 = 1,000 (wF , wE) pos-

sibilities for an operator and so far it has been practical to generate all possible units and synthesise

them to get an estimate of their LUT counts. However, with the FMA’s 3 additional parameters the

number of possibilities is in the order of 28 ×28 ×28 = 16,777,216 for single-precision wE = 8 alone.

It is not practical to generate and synthesise all parameters in this case so a new approach will be

needed.

One possibility is generating and synthesising an FMA unit during runtime as needed. The way

SOAP works would have to be changed to allow this as currently the area information is expected to

already be stored internally. The implementation of this possibility should include a cache so that

the number of LUTs gathered is stored and the same FMA unit would not have to be regenerated and

synthesised in future.

An alternative possibility is to develop a heuristic model of the number of LUTs required. As

Pasca [2] notes, the width of the accumulator is a key factor in determining how much resources

20

3.3. CONSTANT MULTIPLIER

it uses. Therefore the 3 parameters can be reduced to 1 and bringing the number of possible FMA

units to the order of 100×∑15
wE=5 (2wE) = 6,550,400 (each exponent size sets the number of possible

accumulator widths). This a great reduction but still too large and so more heuristics would be

needed to reduce the wE and wF possibilities. For example, figure 3.1 revealed wF to be the key

parameter in determining the number of LUTs for a 3-input adder.

3.2.2 Error

The maximum absolute error for an operation fma(a,b,c), which is ((a×b)+c) in real arithmetic is ex-

pressed in equation 3.6. This model takes the maximum absolute error of performing a multiplication

then an addition, but without the intermediate round-off error δ([a ×b]).

ε
(

fma(a,b,c)
)

= (ε(a) ·ε(b)+ε(a) ·max(|b|)+ε(b) ·max(|a|))+ε([c])+δ([a ×b + c])
(3.6)

3.2.3 Transformations

To allow multiply-and-add expressions to be restructured to use the FMA unit, transformation rules

are needed. These are illustrated in equation set 3.7. The commutativity rule in equation set 3.8

shows the only operand swap that is valid.

(a ×b)+ c ⇐⇒ fma(a,b,c)

a + (b × c) ⇐⇒ fma(b,c, a)
(3.7)

fma(a,b,c) ⇐⇒ fma(b, a,c)(3.8)

3.3 Constant Multiplier

FloPoCo has the floating-point constant multiplier FPConstMult described by Brisebarre et al. in [23].

They describe their fused unit to contain a simplified rounding stage that is no longer on the critical

path, as is the case in a generic floating-point multiplier. In the generic multiplier, the product of the

two [1,2) significands is in [1,4) but in a constant multiplier, the range can be known beforehand.

Furthermore, they prove that the result is always correctly rounded for all input floating-point

numbers that are finite, periodic or otherwise infinitely representable (irrational). The shift-and-add

approach is the core of multiplication by significands that are finitely representable in the particular

wF . Otherwise, at generation, the number of bits needed to represent the constant for a correctly

rounded result is determined.

The developers of FloPoCo’s constant multiplier note that previous work has typically assumed

doubling of the mantissa size of irrational constants like π to achieve correct rounding. They demon-

strate that the actual size needed can be computed using a continued fractions algorithm. In the

worst case of doubling the mantissa size, the resource cost of correct rounding should be less than a

factor of 2 as multiplication cost is sub-linear in the mantissa size of the constant.

21

CHAPTER 3. ANALYSIS AND DESIGN

3.3.1 Area

FloPoCo takes the constant as a string. The string argument can be an expression describing the

constant, for example "cos(e)", and FloPoCo acknowledges the mathematical constant e ≈ 2.718

and calculates the cosine of the number. This is very ideal as no information about the constant is

lost. However, SOAP would have to be extensively modified to allow representation, propagation and

manipulation of these constant expressions. In this project, only constant numbers and not constant

expressions are used. An assumption is made that the constant is finite in its decimal representation

when passed as a string from SOAP to FloPoCo.

There is an infinite number of constants and hence impossible to synthesise all possibilities and

store area information. Therefore, like the FMA, runtime area fetching is needed. Heuristics could be

developed as an alternative by developing an area model based on the mantissa size needed for the

constant as well as the number of shift-and-adds.

3.3.2 Error

The notation constMult(v, a) is taken to represent (v × a) in real arithmetic, with v being a real

constant value. The maximum absolute error for this operation is expressed in equation 3.9. This

model takes the maximum absolute error of performing a multiplication, but assumes there is no

round-off error in the value v , i.e. ε(v) = δ(v) = 0. The maximum absolute error has now eliminated

two terms when compared to the that when using a generic multiplier.

ε (constMult(v, a))

=ε(a) · |v |+δ([v ×a])
(3.9)

3.3.3 Transformations

To allow constant-multiplication expressions to be restructured to use the constant multiplier, trans-

formation rules need to be added to those in SOAP. These are illustrated in equation set 3.10, where v

is a real constant value. This operation has no rules for commutativity.

v ×a ⇐⇒ constMult(v, a)

a × v ⇐⇒ constMult(v, a)
(3.10)

22

C
H

A
P

T
E

R

4
IMPLEMENTATION

The main interface in SOAP is through the AreaErrorAnalysis class which accepts an expression,

input intervals and a precision. It has member method frontier for obtaining a set of Pareto-optimal

expressions with their respective area and error information. The core of the class is another class,

TreeTransformer, which uses transformation as well as reduction rules covered in section 2.2.3 to

recursively gather a set of equivalent expressions.

An expression is represented using the class Expr that includes the methods area and error.

SOAP had previously made the assumption that an expression would have 2 operands but this was

changed throughout the program to allow any number of operands. Member method area calculates

the total number of LUTs by counting unique uses of each operator (as described in section 2.2.1)

and multiplying by the number of LUTs required for the operator.

The member method error of Expr is equivalent to ε : Expression → R, which was described

earlier in section 2.2.2 to gather the maximum absolute error of an expression. The function re-

turns an instance of ErrorSemantics which holds the floating-point bounds (FloatInterval) for

the result of the expression as well as the bounds for absolute error (FractionInterval). Class

FloatInterval uses the mpfr data type from the gmpy2 Python module to represent floating-point

numbers of a particular precision as well as perform arithmetic that emulates floating-point opera-

tions like addition and multiplication with a specified precision context. FractionInterval uses

mpq data type, also from gmpy2, to represent real rational numbers and perform their arithmetic.

The cache of area information mentioned throughout chapter 3 is implemented as a Python

dictionary. The key to this mapping is an ordered collection of the operator and its parameters. The

dictionary is stored into a file as a compact byte stream by using the Python module pickle. This

form is much more efficient than other methods such as JavaScript Object Notation (JSON) which

stores a human-readable text representation of the data. The dictionary is loaded at runtime, or

23

CHAPTER 4. IMPLEMENTATION

created if not present, and updated after any cache miss. The cache is primarily for the FMA and

the constant multiplier which have been shown in chapter 3 to be impractical to pre-compute the

area information of all their possibilities. A parameter has been adder in soap.common to determine

whether or not to assume single or multiple use of the FMA.

4.1 Adding Operators

To add a new operator, firstly the syntax was defined, e.g. add3, constMult. Next, the operator’s

properties of associativity and distributivity are defined by placing it into the respective property

groups. For commutativity, this involves adding a condition for the operator in the recursive walk of

TreeTransformer and defining which operands are commutable.

For the 3-input adder, area information was gathered and stored by sweeping through all possible

values of wE and wE (as seen in figure 3.1). For the FMA and the constant multiplier, the sequence of

FloPoCo commands to be run and their arguments are defined.

The next step is to add a condition in ErrorSemantics.do_op function to define propagation of

error for the new operator. This function evaluates the interval of absolute error after an operation as

well as the floating-point interval for the result. Transformation methods that describe equivalence

rules for the operator are added to a child class of TreeTransformer.

24

C
H

A
P

T
E

R

5
TESTING

In this chapter, the functional correctness of what has been implemented is established. Equations

are evaluated to obtain exact expected results and compared to determine what works.

The results that follow and throughout this report include time durations of the analysis but

they are primarily given to illustrate the relative magnitudes. SOAP’s internal runtime caches—and

excluding the area information caches—were invalidated before each timed analysis. The ideal timing

conditions would be to run the program on idle machines such as the remote compute units on

Amazon Web Services (AWS). However, while still in development and requiring external software

such as Xilinx’s ISE Design Suite to be installed, a standard laptop was used as the testing platform.

Singular frontiers with only one point are plotted with non-optimal points to illustrate transfor-

mations.

5.1 Three-Input Adder

To begin with, the simple expression in equation 5.1 is used, where one might know beforehand that

the input variables have the ranges shown in equation set 5.2.

a +b + c(5.1)

a ∈ [1,100]

b ∈ [0.01,1]

c ∈ [0.1,10]

(5.2)

What should be noted about these intervals is that that with the largest magnitude is written

first in the expression and as explained earlier in section 2.1.1, this order can degrade the numerical

25

CHAPTER 5. TESTING

accuracy if intermediate results are rounded. The above parameters were run for single precision

(wF = 23) to obtain the frontiers in figure 5.1.

800 900 1000 1100 1200 1300 1400
Area (Number of LUTs)

0.8

0.9

1.0

1.1

1.2

A
bs

ol
ut

e
E

rr
or

×10−5

((b + c) + a)((b + c) + a)

add3(b, a, c)

a + b + c

original expression
no fused (0.03s)
with fused (0.04s)

Figure 5.1: Frontiers before and after including the 3-input adder for 3-operand addition at single
precision

First to note is that the original expression is not optimal in either one of the two frontiers. The

original ((a +b)+c) straightforward use of the 2-input adder is optimised to ((b +c)+a); the latter

adds numbers in order of increasing worst-case absolute error which is evident by the increasing

maximum magnitude. Secondly, the 3-input adder improves the error but marginally compared with

through 2-input associativity and at a significant area cost (1.7×).

Correctness will be tested by first evaluating the area. The combined interval for the input and

output values is [0.01,111]. This range falls within the range [0.0078125,128) of binary powers and

hence the exponent range required is [−7,6]. This exponent range would need an exponent size wE

of 4 but this is taken up to the minimum synthesisable exponent size of 5.

A synthesised 2-input adder with parameters wE = 5 and wF = 23 uses 401 LUTs and a 3-input

adder with the same parameters uses 1377 LUTs. This results is 802 LUTs when two 2-input adders

are used. All of this is consistent with figure 5.1.

The error of the original expression ((a + b) + c) is given in equation 5.3, where ε gives the

maximum absolute error of an expression and δ gives the maximum round-off error for an interval.

26

5.1. THREE-INPUT ADDER

ε : Expression →R and δ : IntervalF→R.

ε((a +b)+ c) = ε(a +b)+ε(c)+δ([(a +b)+ c])

= δ([a])+δ([b])+δ([a +b])+δ([c])+δ([(a +b)+ c])

= δ([1,100])+δ([0.01,1])+δ([1.01,101])+δ([0.1,10])+δ([1.11,111])

= 1

2
·2−23 · (64+1+64+8+64)

≈ 1.1981×10−5

(5.3)

Note that δ([(a +b)+ c]) is used as a shorthand for δ([fl(a +b)+ c]). The calculated maximum

absolute error in equation 5.3 matches exactly that of both frontiers in figure 5.1. Continuing on, the

same is done for the more optimal rearrangement ((b +a)+ c) in equation 5.4 and the fused unit

add3(a,b,c) in equation 5.5 to prove correctness.

ε((b + c)+a) = ε(b + c)+ε(a)+δ([(b + c)+a])

= [δ([b])+δ([c])+δ([b + c])]+δ([a])+δ([(b + c)+a])

= δ([0.01,1])+δ([0.1,10])+δ([0.11,11])+δ([1,100])+δ([1.11,111])

= 1

2
·2−23 · (64+1+64+8+64)

≈ 8.6427×10−6

(5.4)

ε(add3(a,b,c)) = ε(a)+ε(b)+ε(c)+δ([a +b + c])

= δ([a])+δ([b])+δ([c])+δ([a +b + c])

= δ([1,100])+δ([0.01,1])+δ([0.1,10])+δ([1.11,111])

= 1

2
·2−23 · (64+1+8+64)

≈ 8.1658×10−6

(5.5)

Note that the difference between equations 5.4 and equations 5.5 and hence the error reduction

of the 3-input adder is the round-off error of the best-case intermediate result (b + c).

In version 1 of SOAP, it is assumed that the input variables are intervals of real numbers and hence

they have an associated error when represented as a binary floating-point. In version 3 however, a user

can set the error interval of the inputs and the default is zero. This means that zero error at the inputs,

i.e. the floating-point value of an input matches its real value, results in δ([a]) = δ([b]) = δ([c]) = 0.

This in turn results in the simplified equation of the error improvement of the 3-input adder as given

by equation 5.6.

ε((b + c)+a)

ε(add3(a,b,c))
= δ([b + c])+δ([(b + c)+a])

δ([a +b + c])
(5.6)

If |a +b + c| ¿ |b + c| then the error improvement can be arbitrarily large since δ([a +b + c])

will be much smaller than the numerator in equation 5.6. Therefore in general, summations with

intermediate results that are far greater in magnitude than that of the final result will benefit greatly

in numerical accuracy through the use of multiple-input adders.

27

CHAPTER 5. TESTING

5.2 Fused Multiply-Add

For, the simple expression in equation 5.7 is used with input variables having the ranges shown in

equation set 5.8.

(a ×b)+ c(5.7)

a ∈ [1,100], b ∈ [0.01,1], c ∈ [0.1,10](5.8)

Figure 5.2 shows the resulting frontiers. First to note is that the FMA unit has improved on both

area and error of the original expression. The minimum synthesisable exponent size of 5 covers the

exponent range needed for the multiplication and for the addition. A multiplier and an adder, both

of wE = 5 and wF = 23, require 121+401 = 522 LUTs.

500 505 510 515 520
Area (Number of LUTs)

1.4

1.5

1.6

1.7

1.8

A
bs

ol
ut

e
E

rr
or

×10−5 (a×b)+ c

original expression
no fused (0.02s)
with fused (0.03s)

Figure 5.2: Frontiers before and after including multiple-use FMA for a simple expression at single
precision

To determine parameters for the FMA, the exponent bounds for the input into the accumulator

are evaluated. The exponent range needed for (a ×b) ∈ [0.01,100] is [−7,6], for c ∈ [0.1,10] is [−4,3]

and for the result ((a ×b)+ c) ∈ [0.11,110] is [−4,6]. MaxMSBX is the maximum of the accumulator

inputs’ exponent upper bounds, 6, with 2 bits added on as described earlier in equation 3.4. MSBA

is maximum out of MaxMSBX and the output’s exponent upper bound ,6, with 2 bits added on.

LSBA is taken to be such that the accumulator input with the lowest exponent can be stored entirely

without any loss, (−7−wF). An FMA—that includes conversion from the accumulator’s fixed-point

representation back to floating-point—with parameters MaxMSBX = 8, MSBA = 8 and LSBA =−30

uses 309+191 = 500 LUTs.

28

5.2. FUSED MULTIPLY-ADD

The maximum absolute errors for the original and for the fused expressions are included in

equations 5.9 and 5.10; they are both consistent with the plot in figure 5.2.

ε((a ×b)+ c) = ε(a ×b)+ε(c)+δ([(a ×b)+ c])

= (ε(a) ·ε(b)+max(|b|) ·ε(a)+max(|a|) ·ε(b)+δ([a ×b]))+δ([c])+δ([(a ×b)+ c])

= δ([a]) ·δ([b])+δ([a])+100 ·δ([b])+δ([a ×b])+δ([c])+δ([(a ×b)+ c])

= δ([1,100]) ·δ([0.01,1])+δ([1,100])+100 ·δ([0.01,1])+δ([0.01,100])+δ([0.1,10])+δ([0.11,110])

= 1

2
·2−23 ·

(
1

2
·2−23 ·64+64+100+64+8+64

)
≈ 1.7881×10−5

(5.9)

ε(fma(a,b,c)) = ε(a ×b)+ε(c)+δ([(a ×b)+ c])

= (ε(a) ·ε(b)+max(|b|) ·ε(a)+max(|a|) ·ε(b))+δ([c])+δ([a ×b + c])

= δ([a]) ·δ([b])+δ([a])+100 ·δ([b])+δ([c])+δ([(a ×b)+ c])

= δ([1,100]) ·δ([0.01,1])+δ([1,100])+100 ·δ([0.01,1])+δ([0.1,10])+δ([0.11,110])

= 1

2
·2−23 ·

(
1

2
·2−23 ·64+64+100+8+64

)
≈ 1.4067×10−5

(5.10)

If the floating-point representation of the input variables are taken to be exact and hence ε(a) =
ε(b) = ε(c) = 0, then error improvement is given by equation 5.11. Similarly to the 3-input adder, it is

evident that if |a ×b|À |(a ×b)+ c|, i.e. if the intermediate result is far greater in magnitude than the

final result, then an arbitrarily large error improvement is achieved.

ε((a ×b)+ c)

ε(fma(a,b,c))
= δ([a ×b])+δ([(a ×b)+ c])

δ([a ×b + c])
(5.11)

5.2.1 The Single-Use FMA

The previous analysis of the FMA was assuming the accumulator size was made to hold the exact

result in its entirety, orientated towards continuous accumulation such as that as part of a loop. Here,

the single-use design of an FMA is used where the accumulator size is such that it is minimum in size

to allow correct accumulation of only 2 summands. The frontiers are displayed in figure 5.3.

Firstly, the absolute errors are exactly the same as before because the errors represent that of

a single iteration of the expression. The parameters MaxMSBX and MSBA remain the same and

LSBA is the only one that changes. The minimum exponent needed for (a ×b) is -7 and that for

c is -4, therefore LSBA is made to be (−4− wF − 1) as per equation 3.5. An FMA—that includes

conversion back to floating-point—with parameters MaxMSBX = 8, MSBA = 8 and LSBA =−28 uses

29

CHAPTER 5. TESTING

490 500 510 520
Area (Number of LUTs)

1.4

1.5

1.6

1.7

1.8

A
bs

ol
ut

e
E

rr
or

×10−5 (a×b)+ c

original expression
no fused (0.02s)
with fused (0.03s)

Figure 5.3: Frontiers before and after including single-use FMA for a simple expression at single
precision

297+187 = 484 LUTs. The area improvement has now increased due to a smaller accumulator, from

1.04× assuming multiple uses to 1.08× with a single-use FMA. If the difference between the minimum

exponent of (a ×b) and that of c is larger then there will be a larger change in area improvement.

5.3 Constant Multiplier

Single-precision representation of π is only accurate to the first 7 decimal digits. If more digits are

added as in equation 5.12, a generic multiplier will be unaware of them whereas the implemented

constant multiplier should be generated such that there is correct rounding of the result as if there

was no round-off error in the constant. Figure 5.4 shows the resulting frontiers.

a ×3.1415926535897932384626433832795

a ∈ [−1,1]
(5.12)

The number of LUTs needed to synthesise a (wE = 8, wF = 23) multiplier by the longer π approxi-

mation is 342, which matches the analysis output. A generic multiplier of similar parameters uses 136

LUTs and so the area cost of the constant multiplier is 2.51× which is more than what was previously

suggested in the publication in section 3.3.

Note that SOAP calculates the exact round-off error of a constant number: δ(3.14. . .) = (3.14. . .)−
fl(3.14. . .) ≈−8.7423×10−8, where fl is the mapping R→ F, with wE = 8 and wF = 23. Proofs for the

maximum absolute errors of the original expression and the constant multiplier implementation

are given in equations 5.13 and 5.14. For the constant multiplier, the assumption is ε(3.14. . .) =
δ(3.14. . .) = 0, i.e. there is no round-off error in the constant. Absolute error has improved 1.28× with

30

5.3. CONSTANT MULTIPLIER

150 200 250 300 350
Area (Number of LUTs)

3.0

3.2

3.4

3.6

3.8

4.0
A

bs
ol

ut
e

E
rr

or
×10−7 a×3.1415926535897932384626433832795

original expression
no fused (0.02s)
with fused (19.32s)

Figure 5.4: Frontiers before and after including the constant multiplier, for a π multiplier at single
precision input/output

the constant multiplier.

ε(a ×3.14. . .) = (ε(a) ·ε(3.14. . .)+|3.14. . . | ·ε(a)+max(|a|) ·ε(3.14. . .)+δ([a ×3.14. . .]))

= (δ([a]) ·δ(3.14. . .)+ (3.14. . .) ·δ([a])+max(|a|) ·δ(3.14. . .)+δ([a ×3.14. . .]))

= (δ([−1,1]) ·δ(3.14. . .)+ (3.14. . .) ·δ([−1,1])+1 ·δ(3.14. . .)+δ([−3.14. . . ,3.14. . .]))

= 1

2
·2−23 ·

(
1

2
·2−23 ·2+ (3.14. . .)+2 · ((3.14. . .)−fl(3.14. . .))

)
≈ 3.9389×10−7

(5.13)

ε (constMult(3.14. . . , a)) = ε(a) · |3.14. . . |+δ([a ×3.14. . .])

= δ([−1,1]) · (3.14. . .)+δ([−3.14. . . ,3.14. . .])

= 1

2
·2−23 · ((3.14. . .)+2)

≈ 3.0646×10−7

(5.14)

31

C
H

A
P

T
E

R

6
RESULTS

In this chapter, the implemented program is quantitatively evaluated to investigate the extent of

improvements made. The inner expressions of PolyBench [3] and Livermore Loops [24] are used.

These two benchmark suites contain kernels that are widely used to evaluate parallel computers.

In this project, 17 benchmark expressions that are nested inside a selection of the kernels are used.

These chosen kernels range in applications from fluid dynamics to statistics.

Listing 2 shows a snippet of the 2mm benchmark kernel from PolyBench which performs 2 matrix

multiplications. The triple-nested highlighted instructions in lines 94 and 101 are transformed to

the expressions in equations 6.1 and 6.2 respectively. They are then labelled in this project as 2mm_1

and 2mm_2 respectively. The variable alpha is constant during runtime, with a default value of 1.5. To

obtain input intervals for PolyBench kernels, the array initialisation functions were studied and for

Livermore Loops a range of [0,1] is assumed. All the benchmark expressions and respective input

intervals are listed in Appendix B.

t + (alpha×a ×b)
alpha=1.5=======⇒ t + (1.5×a ×b)(6.1)

d + (t × c)(6.2)

6.1 Single-Precision, Multiple-Use FMA

The 17 benchmark expressions were run at single-precision (wF = 23) and assuming multiple use of

the FMA to obtain the result summary in table 6.1. The analysis times in the table are such that there

was always a hit in the area dynamic cache, i.e. a first time run to fetch and store the area information

then run a second time.

33

CHAPTER 6. RESULTS

87 # pragma scop
88 /* D := alpha*A*B*C + beta*D */
89 for (i = 0; i < _PB_NI; i++)
90 for (j = 0; j < _PB_NJ; j++)
91 {
92 tmp[i][j] = SCALAR_VAL(0.0);
93 for (k = 0; k < _PB_NK; ++k)
94 tmp[i][j] += alpha * A[i][k] * B[k][j];
95 }
96 for (i = 0; i < _PB_NI; i++)
97 for (j = 0; j < _PB_NL; j++)
98 {
99 D[i][j] *= beta;

100 for (k = 0; k < _PB_NJ; ++k)
101 D[i][j] += tmp[i][k] * C[k][j];
102 }
103 # pragma endscop

Listing 2: Snippet from the 2mm kernel in PolyBench [3]

Area Improvement compares the points of least area on the Pareto frontiers: original best area
new best area and

similarly for error. Area Cost compares the area needed to achieve the best error on the frontiers:
area of new best error

area of original best error . And finally, Analysis Time is new time
old time .

Looking at table 6.1, it is immediately evident that the implemented program in this project

extends version 1 of SOAP without losing previous optimal points, as can be seen by the fact that

all area and error improvements are greater than or equal to one. Secondly, the geometric means

reveal overall noticeable improvements: 1.036× in area and 1.187× in error at an area cost of 1.793×.

Overall, there is a modest increase in analysis time that surges up for compounded expressions like

state_frag and heat-3d.

Individual cases will now be analysed to further explain the results of table 6.1. As previously,

singular frontiers are expanded with non-optimal points to illustrate transformations.

The best area improvement of 1.131× was achieved in fdtd-2d_1 and figure 6.1 shows its fron-

tiers. The equivalent expression with the best area is illustrated in equation 6.3. The constant 0.5 is an

exponent of 2 and so only requires one shift, making the constant multiplier very minimum in digital

logic. Some error improvement was obtained by the transformed expression fma(0.5, (b + c), a)).

a + (0.5× (c +b))

↓
a + constMult(0.5, (b + c))

(6.3)

The best error improvement of 1.433× was achieved in jacobi-1d and figure 6.2 shows its

frontiers. The equivalent expression with the best error is illustrated in equation 6.5. It should be noted

that the number 0.33333 is exactly as it appears in the PolyBench source code. The transformation

with the best error was due to the use of two fused units, a constant multiplier and a 3-input adder.

Note that one of the two new mid-frontier expressions is constMult(0.33333,((b +c)+a)) which does

34

6.1. SINGLE-PRECISION, MULTIPLE-USE FMA

Benchmark
Name

Area
Improvement

Error
Improvement

Area
Cost

Analysis
Time

2d_hydro 1.000× 1.270× 1.742× 10.7×
2mm_1 1.115× 1.000× 2.102× 1.5×
2mm_2 1.000× 1.000× 2.544× 2.1×
3mm 1.000× 1.000× 2.443× 1.3×
correlation 1.000× 1.254× 1.880× 1.0×
deriche 1.000× 1.176× 1.666× 3.3×
fdtd-2d 1.000× 1.157× 1.541× 1.4×
fdtd-2d_1 1.131× 1.143× 1.791× 2.0×
gemm 1.000× 1.168× 2.219× 1.0×
gemver 1.000× 1.227× 1.775× 1.3×
heat-3d 1.053× 1.286× 1.518× 66.2×
jacobi-1d 1.000× 1.433× 1.551× 1.2×
seidel 1.000× 1.313× 1.374× 4.7×
state_frag 1.000× 1.294× 2.170× 190.1×
symm 1.115× 1.283× 1.532× 8.2×
syr2k 1.115× 1.133× 1.198× 6.4×
syrk 1.115× 1.143× 2.051× 1.2×
Min 1.000× 1.000× 1.198× 1.0×
Max 1.131× 1.433× 2.544× 190.1×
Geomean 1.036× 1.187× 1.793× 3.5×

Table 6.1: Summary of benchmark results for single precision and with the multiple-use implementa-
tion of the FMA

not improve the area of the original expression because the number does not require a small number

of shift-and-add operations.

0.33333× ((a+b)+ c))

↓
constMult(0.33333, add3(a,b,c)))

(6.4)

The worst area cost to achieve the best error was 2.544× in 2mm_2 and figure 6.3 shows its frontiers.

The culprit equivalent expression is the only fused arithmetic expression on the frontier—since the

expression is quite simple. Equation 6.5 illustrates the transformation to the FMA unit. The expo-

nent ranges needed for the FMA’s accumulator, assuming multiple uses, are: qd ∈ [−126,22], qt×c ∈
[−126,0], qd+(t×c) ∈ [−126,22]. This results in a very wide accumulator with a width of 173 bits. This

arises from the fact that at least one of the input intervals includes zero and hence the exponent lower

bound is the minimum exponent value for the particular exponent size: minq =−(2wE−1 −2) =−126.

d + (t × c))

↓
fma(t , c, d)

(6.5)

35

CHAPTER 6. RESULTS

1000 1200 1400 1600 1800 2000
Area (Number of LUTs)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

A
bs

ol
ut

e
E

rr
or

×10−7 fdtd-2d 1: a +(0.5× (c + b))

original expression
no fused (0.04s)
with fused (0.07s)

Figure 6.1: Frontiers for fdtd-2d_1 at single precision, and with the multiple-use FMA

1200 1400 1600
Area (Number of LUTs)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

A
bs

ol
ut

e
E

rr
or

×10−7 jacobi-1d: 0.33333× (a + b + c)

original expression
no fused (0.10s)
with fused (0.26s)

Figure 6.2: Frontiers for jacobi-1d at single precision, and with the multiple-use FMA

The worst analysis time was 190.1× in state_frag and figure 6.4 shows its frontier alongside

non-Pareto optimal equivalent expressions. The increased analysis time is explained by the increase

in the number of equivalent expressions to analyse. At a transformation depth of 3, the fused frontier

has 69× the number of equivalent expressions to analyse. The transformed expression with the best

error has 8 FMA units, achieving an error improvement of 1.294× at an area cost of up to 2.170×
more LUTs. Similarly to the previous case of worst area cost, the FMA units here have very wide

accumulators due to accumulator input ranges including zero and hence the accumulator’s LSB

exponent equalling minq .

When SOAP’s greedy trace (explained in section 2.2.3) is used instead of performing a full closure,

the frontiers in figure 6.5 are obtained. With this search algorithm, the area and error improvements

are the same as well as the area cost but now at a much reduced analysis time of 9.8×, down from

190.1×. With the greedy trace, the fused frontier has reduced the number of expressions to analyse

by a factor of 11. Therefore, taking this extreme benchmark, the greedy trace is seen to improve the

analysis time while still providing the same optimal expressions.

36

6.2. SINGLE- AND DOUBLE-PRECISION, SINGLE- AND MULTIPLE-USE FMA

600 800 1000 1200 1400 1600
Area (Number of LUTs)

1

2

3

4

5

6

7

A
bs

ol
ut

e
E

rr
or

×10−8 + 5.0000011×10−1 2mm 2: d +(t× c)

original expression
no fused (0.02s)
with fused (0.02s)

Figure 6.3: Frontiers for 2mm_2 at single precision, and with the multiple-use FMA

6000 8000 10000 12000
Area (Number of LUTs)

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

A
bs

ol
ut

e
E

rr
or

×10−6 state frag: u + r× (z + r× y)+ t× (a + r× (b + r× c)+ t× (d + r× (e + r× f)))

original expression
no fused (4.49s)
with fused (162.63s)

Figure 6.4: Full closure

6000 8000 10000 12000
Area (Number of LUTs)

3.0

3.2

3.4

3.6

3.8

4.0

A
bs

ol
ut

e
E

rr
or

×10−6 state frag: u + r× (z + r× y)+ t× (a + r× (b + r× c)+ t× (d + r× (e + r× f)))

original expression
no fused (1.83s)
with fused (17.96s)

Figure 6.5: Greedy trace

Figure 6.6: Frontiers for state_frag at a transformation depth of 3, at single precision and with the
multiple-use FMA

6.2 Single- and Double-Precision, Single- and Multiple-Use FMA

Analysis very similar to the preceding section was performed for single precision (wF = 23) and

double precision (wF = 52), as well as either assuming single or multiple uses of the FMA. The

aggregated results are included in table 6.2.

First to note is that there is an almost negligible difference in improvements as well as area cost for

the benchmark expressions between the single- and the multiple-use FMA. This is attributed to the

fact that every interval of all benchmark expressions includes zero and hence the FMA’s accumulator

has to be very wide even when assuming single use.

Secondly, at double precision the worst area cost increased significantly compared to at single

precision. This is due to a large standard exponent size doublewE = 11, compared to singlewE = 8. The

FMA in 2mm_2 has an LSBA =min q =−(2wE−1 +2) and hence an 8× increase in its accumulator width

from single to double precision. Thirdly, the trends and reasoning in the preceding section also

apply to double precision as seen by the recurring extreme benchmarks for each respective frontier

37

CHAPTER 6. RESULTS

Precision FMA Type
Best
Area

Improvement

Best
Error

Improvement

Worst
Area
Cost

Worst
Analysis

Time

single
single-use

1.13×
(fdtd-2d_1)

1.43×
(jacobi-1d)

2.55×
(2mm_2)

190×
(state_frag)

multiple-use
1.13×

(fdtd-2d_1)

1.43×
(jacobi-1d)

2.54×
(2mm_2)

160×
(state_frag)

double
single-use

1.33×
(fdtd-2d_1)

1.31×
(jacobi-1d)

7.87×
(2mm_2)

120×
(state_frag)

multiple-use
1.34×

(fdtd-2d_1)

1.31×
(jacobi-1d)

7.87×
(2mm_2)

130×
(state_frag)

Table 6.2: Aggregate of benchmark results for single and double precision, and for the two types of
FMA units

measurement.

Fourthly, the best area improvement increases with a higher precision due to the constant

multiplier in fdtd-2d_1. The constant is 0.5 and so the number of LUTs needed to implement

the multiplier is fairly unchanging in wF compared to implementing with a generic floating-point

multiplier.

Fifth to note is that the best error improvement decreases with increasing precision because the

fused units primarily boost the accuracy by reducing intermediate rounding-off errors. With a higher

precision, the rounding-off error decreases at an exponential rate as evident in the unit-of-last-place

definition in equation 2.7.

38

C
H

A
P

T
E

R

7
EVALUATION

In chapter 6, the fused-arithmetic frontiers of benchmark expressions were compared to the original

frontiers using generic discrete-arithmetic units and seen to make significant improvements. In this

chapter, the fused frontier is evaluated against a common method of varying precision, as well as

version 3 of SOAP which considers latency and analyses full numerical programs.

7.1 Against Varying Precision

A commonplace method to improve numerical accuracy is to increase the precision of operators

in the datapath. The seidel benchmark is used to make a comparison for single precision and

assuming multiple-use of the FMA. As figure 7.1 shows and seen in table 6.1, the best error improves

by 1.3× and the best area is exactly the same as that using discrete arithmetic units. However, when

the precision of the frontier points is varied, it is evident that at some precisions there is both an

area and error improvement. Between single and double precision, the best area improvement now

becomes 1.04×.

39

CHAPTER 7. EVALUATION

2000 2500 3000 3500 4000 4500
Area (Number of LUTs)

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

A
bs

ol
ut

e
E

rr
or

seidel: 0.2× (a + b + c + d + e)

original expression
original frontier (0.30s)
fused frontier (1.22s)
varying precision of original frontier
varying precision of fused frontier

Figure 7.1: Frontiers for varying the precision of the frontier of seidel at single precision, and with
the multiple-use FMA

7.2 Against SOAP Version 3

Unfortunately, direct comparisons of area in number of LUTs between versions 1 and 3 of SOAP are

not very meaningful for a number of reasons. Firstly, the target device is different—Virtex 7 instead of

Virtex 6 in version 1—so the number of LUTs is not directly comparable although indicative. Secondly,

SOAP 3 drops the ability to synthesise operators of specific as-needed exponent size and precision,

and instead only has area information for IEEE-754 standard single and double precision for each

operator. Thirdly, version 3 considers latency of programs and so it uses its scheduling ability to

reduce the number of units by pipelining them, whereas version 1 in comparison calculates the area

for combinatorial logic.

With the above taken into account, an attempt is made to compare frontiers between the two

different versions of SOAP. The seidel benchmark was used and version 1 of SOAP was modified

to count operators in the case that the number of operators was reduced. For example, the original

expression 0.2× (a +b +c +d +e) is taken to require one multiplier and one one (pipelined) adder.

The input error intervals given into version 3 of SOAP are such that they match those modelled in

version 1.

The result of this evaluation is figure 7.2 where area should be ideally ignored but the proximity

between the versions is seen to be significant. It should also be noted that version 3 of SOAP includes

underflow error in its estimation of the absolute error, and hence the sightly larger error values in its

frontier. Also to note is that the frontier of SOAP 3 is three-dimensional (latency being the third) and

40

7.2. AGAINST SOAP VERSION 3

hence the presence of the point that does not appear to be Pareto-optimal in this view.

500 1000 1500 2000 2500
Area (Number of LUTs)

1.2

1.4

1.6

1.8

2.0

2.2

A
bs

ol
ut

e
E

rr
or

×10−7 seidel: 0.2× (a + b + c + d + e)

original expression
no fused (0.07s)
any fused (0.10s)
SOAP 3 (2.29s)

Figure 7.2: Frontiers for seidel at single precision, and with the multiple-use FMA, compared to a
matched and modified version 3 of SOAP

What is evident from figure 7.2 is the significant error improvement made by the constant

multiplier and the 3-input adder, even when compared to version 3 of SOAP (1.4× improvement).

This illustrates that if fused arithmetic units were implemented into version 3 of SOAP, then the

frontiers have potential to expand into greater optimality.

41

C
H

A
P

T
E

R

8
CONCLUSIONS

This project has successfully shown what is possible with fused arithmetic units and improvements

that can be made in a high-level synthesis flow. Furthermore, the transformation capabilities of SOAP

are harnessed to analyse areas of optimality in area and numerical accuracy. In the process, this

project has presented challenges with implementing fused arithmetic units and solutions such as

runtime area fetching while making use of a dynamic cache.

While there was significant analysis time increase with large expressions, it was demonstrated in

section 6.1 that using SOAP’s greedy trace reduced this increase significantly while still obtaining the

same optimal equivalent expressions.

It has also been shown empirically in chapter 5 that the 3-input adder and the fused multiply-add

can make arbitrarily large accuracy improvements if the magnitude of their intermediate results is

far greater than that of their final result.

Version 3 of SOAP has not been able to reduce the resource usage of any of its 11 benchmark

programs (from PolyBench and Livermore Loops) as ‘they have no redundant computations’ [9,

p. 2]. However, this project has shown that noticeable area improvements can be made to the

inner expressions of benchmark programs by fused arithmetic units, and specifically the constant

multiplier. These fused units open up the possibilities for a tool evaluating a numerical program as a

whole.

8.1 Further Work

Tighter Interval Bounds

Tracking the bounds of an expression’s value using interval arithmetic is an overestimation and

the margin grows with the number of operations. A tighter expression value interval results in a

43

CHAPTER 8. CONCLUSIONS

better estimate of the maximum round-off error. The better and exact method of evaluating output

value interval would be to perform minimisation and maximisation on the expression with the

given intervals to determine exact bounds of the expression value. For example, the interval of

a × (1−a)× (1+a) when a ∈ [0,2] evaluates to [−1,1]× [0,2]× [0,2] = [−2,2] using interval arithmetic

whereas the exact interval is approximately [−0.58,0.58] as obtained from solving two constrained

optimisation problems on a third-order polynomial. Interval arithmetic, in this case, results in the

round-off error to be an overestimation by a factor of 4. Python module scipy [25] seems promising

for solving constrained optimisation problems.

FMA Accumulator Design Space

Firstly, as already mentioned in section 3.2.1, the implemented fetching of the FMA’s area information

during runtime has the alternative of using a heuristic model. Some analysis will be needed to

reduce the parameters to 2. The floating-point multiplier that is built into the DotProduct should be

analysed as was done in figure 3.1 for the 3-input adder to determine the key parameter.

Secondly, it was discovered in chapter 6 that all benchmarks—and hence most real-world

applications—have input intervals that include zero. The accumulator in this project was made

to cover the minimum exponent range, minq , at a cost. Moving on, SOAP’s expression design space

could be expanded to include varying accumulator widths by varying LSBA as in equation 8.1 where

the width increases in α multiples of wF . This would require expanding the error model of the FMA

to take into account non-ideal accumulators widths and their round-off errors due to any loss in

least-significant bits.

LSBA = MSBA − (α×wF)−1(8.1)

SOAP Version 3 and Latency

Limiting the scope of this project to area and accuracy trade-offs has set the foundation to expand

the work with fused arithmetic units towards considering latency and full programs in version 3 of

SOAP. Fused units with shorter critical paths are expected to reduce latency and those that reduced

error are expected to make larger improvements as part of a loop. Area improvement of loop content

is expected to scale with the level of loop unrolling.

The FMA has been implemented with loops in mind through the multiple-use type in this project.

The constant multiplier in this project has potential to be used to implement division by constants.

Furthermore, version 3 of SOAP could explore the design space of implementing division by small

integers by using FloPoCo’s FPConstMultRational unit as De Dinechin et al. demonstrate in [26].

44

A
P

P
E

N
D

I
X

A
USER GUIDE

The project’s source code, including that used to generate graphs, is available to download from

https://github.com/eugenius1/soap. This guide is also available in the README.md file in the

repository.

A.1 Installing

These instructions are given for Ubuntu and are expected to work for other major Linux operating

systems.

1. Download or clone the git repository. The default branch should be eusebius/soap1/fused.

2. Install matplotlib:

http://matplotlib.org/users/installing.html#build-requirements

3. Install Python3 if not already installed:

https://www.python.org

4. Install gmpy2. From the shell:

sudo apt-get install python3-gmpy2

5. Install other Python dependencies. From the project directory:

pip3 install -r requirements.txt

Optionally, in order to allow fetching of area information beyond that already stored (the included

cache is sufficient for the default benchmark parameters):

45

https://github.com/eugenius1/soap
http://matplotlib.org/users/installing.html#build-requirements
https://www.python.org

APPENDIX A. USER GUIDE

• Install FloPoCo 2.5.0:

http://flopoco.gforge.inria.fr/flopoco_installation.html

• Install ISE Design Suite version 14.7 (requires a license file):

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/

design-tools.html

Either add the following locations of binaries for the above programs to your $PATH shell environ-

ment variable, or make symbolic links and add them to an existing $PATH location like /usr/bin/:

• /path/to/your/flopoco-2.5.0/flopoco

• /path/to/your/Xilinx/14.7/ISE_DS/ISE/bin/lin64/xst

A.2 Usage

While in the project directory, run the following command to run the default parameters and see

graphs:

PYTHONPATH=. python3 tests/fused/analysis.py

The function call run() at the end of tests/fused/analysis.py can take keyword arguments for

analysis and plotting.

46

http://flopoco.gforge.inria.fr/flopoco_installation.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools.html

A
P

P
E

N
D

I
X

B
BENCHMARKS

For each benchmark, the expression and input ranges are given.

B.1 PolyBench

2mm_1

t + (1.5×a ×b)

a ∈ [0,1],b ∈ [0,1], t ∈ [0,3300]
(B.1)

2mm_2

d + (t × c)

t ∈ [0,1],c ∈ [0,1],d ∈ [0,5940001.2]
(B.2)

3mm

e + (a ×b)

a ∈ [0,0.2],b ∈ [0,0.2],e ∈ [0,80]
(B.3)

correlation

s + ((d +m)× (d +m))

s ∈ [0,1],d ∈ [0,6000],m ∈ [−1,0]
(B.4)

deriche

(a × i)+ (c ×x)+ (b × y)+ (d × z)

a ∈ [0,1], i ∈ [0,1],c ∈ [0,1], x ∈ [0,1],b ∈ [0,1], y ∈ [0,1],d ∈ [0,1], z ∈ [0,1]
(B.5)

47

APPENDIX B. BENCHMARKS

fdtd-2d_1

a + (0.5× (c +b))

a ∈ [0,1],b ∈ [−1,0],c ∈ [0,1]
(B.6)

fdtd-2d

h + (−0.7)× (e + f + y + z)

h ∈ [0,1],e ∈ [0,1], f ∈ [−1,0], y ∈ [0,1], z ∈ [−1,0],h ∈ [0,1]
(B.7)

gemm

c + (32412×a ×b)

a ∈ [0,1],b ∈ [0,1],c ∈ [0,1]
(B.8)

gemver

a + (u × v)+ (w ×x)

a ∈ [0,1],u ∈ [0,4000], v ∈ [0,2000], w ∈ [0,1000], x ∈ [0,
2000

3
]

(B.9)

heat-3d
′0.125× (a + (−2)×b + c)+0.125× (d + (−2)×b +e)+0.125× (f + (−2)×b + g)+b′,

a ∈ [0,30],b ∈ [0,30],c ∈ [0,30],d ∈ [0,30],e ∈ [0,30], f ∈ [0,30], g ∈ [0,30]
(B.10)

jacobi-1d

Note that the number 0.33333 is exactly as it appears in the PolyBench source code.

0.33333× (a +b + c)

a ∈ [0,1],b ∈ [0,1],c ∈ [0,1]
(B.11)

seidel

0.2× (a +b + c +d +e)

a ∈ [0,1],b ∈ [0,1],c ∈ [0,1],d ∈ [0,1],e ∈ [0,1]
(B.12)

symm

(1.2× c)+ (1.5×a ×b)+ (1.5× t)

a ∈ [0,5],b ∈ [0,5],c ∈ [0,5], t ∈ [0,1]
(B.13)

syr2k

c + (a ×1.5×b)+ (e ×1.5×d)

a ∈ [0,1],b ∈ [0,1],c ∈ [0,1.56],d ∈ [0,1],e ∈ [0,1]
(B.14)

48

B.2. LIVERMORE LOOPS

syrk

c + (1.5×a ∗b)

a ∈ [0,1],b ∈ [0,1],c ∈ [0,1.2]
(B.15)

B.2 Livermore Loops

2d_hydro

Kernel 23—2-D implicit hydrodynamics fragment

z + (0.175× (a ×b + c ×d +e × f + g ×h + i + j))

a ∈ [0,1],b ∈ [0,1],c ∈ [0,1],d ∈ [0,1],e ∈ [0,1], f ∈ [0,1],

g ∈ [0,1],h ∈ [0,1], i ∈ [0,1], j ∈ [−1,0], z ∈ [0,1],

(B.16)

state_frag

Kernel 7—equation of state fragment

u + r × (z + r × y)+ t × (a + r × (b + r × c)+ t × (d + r × (e + r × f)))

a ∈ [0,1],b ∈ [0,1],c ∈ [0,1],d ∈ [0,1],e ∈ [0,1], f ∈ [0,1],

r ∈ [0,1], t ∈ [0,1],u ∈ [0,1], y ∈ [0,1], z ∈ [0,1]

(B.17)

49

BIBLIOGRAPHY

[1] Y. Fukumura, P. Hamilton, M. Nakahata, and T. Oomori, “Three-term input floating-point

adder-subtractor,” Patent US8 185 570 B2, 2012. [Online]. Available: https://www.google.

com/patents/US8185570

[2] B. Pasca, “Customizing floating-point operators for linear algebra acceleration on fpgas,”

Ph.D. dissertation, 2008. [Online]. Available: http://www.bogdan-pasca.org/resources/

publications/Master2%20Report%20-%20Bogdan%20Pasca%202008.pdf

[3] L.-N. Pouchet, “Polybench: The polyhedral benchmark suite,” URL:

http://www.cs.ucla.edu/pouchet/software/polybench, 2012.

[4] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive applications

with gpus and fpgas,” in Application Specific Processors, 2008. SASP 2008. Symposium on.

IEEE, 2008, pp. 101–107.

[5] R. Manohar, R. Karmazin, and C. T. O. Otero, Automated layout for integrated circuits with

nonstandard cells, 2014.

[6] D. B. Thomas, “A general-purpose method for faithfully rounded floating-point function approx-

imation in fpgas,” in Computer Arithmetic (ARITH), 2015 IEEE 22nd Symposium on. IEEE,

2015, pp. 42–49.

[7] X. Gao, S. Bayliss, and G. A. Constantinides, “Soap: Structural optimization of arithmetic expres-

sions for high-level synthesis,” in Field-Programmable Technology (FPT), 2013 International

Conference on. IEEE, 2013, pp. 112–119.

[8] X. Gao and G. A. Constantinides, “Numerical program optimization for high-level synthesis,” in

Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays. ACM, 2015, pp. 210–213.

[9] X. Gao, J. Wickerson, and G. A. Constantinides, “Automatically optimizing the latency, area, and

accuracy of c programs for high-level synthesis,” in Proceedings of the 2016 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays. ACM, 2016, pp. 234–243.

[10] W. Kahan, “Ieee standard 754 for binary floating-point arithmetic,” Lecture Notes on the Status

of IEEE, vol. 754, no. 94720-1776, p. 11, 1996.

51

https://www.google.com/patents/US8185570
https://www.google.com/patents/US8185570
http://www.bogdan-pasca.org/resources/publications/Master2%20Report%20-%20Bogdan%20Pasca%202008.pdf
http://www.bogdan-pasca.org/resources/publications/Master2%20Report%20-%20Bogdan%20Pasca%202008.pdf

BIBLIOGRAPHY

[11] N. J. Higham, Accuracy and stability of numerical algorithms. SIAM, 2002.

[12] X. Inc., “Virtex-6 family overview,” p. 11, 20th August 2015 2015. [Online]. Available:

https://www.xilinx.com/support/documentation/data_sheets/ds150.pdf

[13] F. D. Dinechin and B. Pasca, “Designing custom arithmetic data paths with flopoco,” IEEE Design

& Test of Computers, vol. 28, no. 4, pp. 18–27, 2011.

[14] J.-M. Muller, On the definition of ulp (x), 2005.

[15] A. M. Smith, G. A. Constantinides, and P. Y. Cheung, “Fused-arithmetic unit generation for recon-

figurable devices using common subgraph extraction,” in Field-Programmable Technology,

2007. ICFPT 2007. International Conference on. IEEE, 2007, pp. 105–112.

[16] E. E. Swartzlander and H. H. M. Saleh, “Fft implementation with fused floating-point

operations,” Computers, IEEE Transactions on, vol. 61, no. 2, pp. 284–288, 2012, iD:

TN_ieee10.1109/TC.2010.271.

[17] J. H. Min, S.-W. Kim, and E. E. Swartzlander, “A floating-point fused fft butterfly

arithmetic unit with merged multiple-constant multipliers,” pp. 520–524, 2011, iD:

TN_ieee10.1109/ACSSC.2011.6190055.

[18] M. Langhammer, “Floating point datapath synthesis for fpgas,” in Field Programmable Logic

and Applications, 2008. FPL 2008. International Conference on. IEEE, 2008, pp. 355–360.

[19] W. Kahan, “Pracniques: Further remarks on reducing truncation errors,” Commun.ACM, vol. 8,

no. 1, p. 40, jan 1965. [Online]. Available: http://doi.acm.org/10.1145/363707.363723

[20] N. J. Higham, “The accuracy of floating point summation,” SIAM Journal on Scientific Computing,

vol. 14, no. 4, pp. 783–799, 1993.

[21] U. Kulisch, “Circuitry for generating scalar products and sums of floating point numbers with

maximum accuracy,” Patent US4 622 650 A, 1986.

[22] A. R. Lopes and G. A. Constantinides, “A fused hybrid floating-point and fixed-point dot-product

for fpgas,” in International Symposium on Applied Reconfigurable Computing. Springer,

2010, pp. 157–168.

[23] N. Brisebarre, F. D. Dinechin, and J.-M. Muller, “Integer and floating-point constant multipliers

for fpgas,” in Application-Specific Systems, Architectures and Processors, 2008. ASAP 2008.

International Conference on. IEEE, 2008, pp. 239–244.

[24] J. Dongarra and P. Luszczek, Livermore Loops, ser. Encyclopedia of Parallel Computing. Springer,

2011, pp. 1041–1043.

52

https://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://doi.acm.org/10.1145/363707.363723

BIBLIOGRAPHY

[25] E. Jones, T. Oliphant, P. Peterson et al., “Scipy: Open source scientific tools for python,” 2001–.

[Online]. Available: http://www.scipy.org/

[26] F. D. Dinechin and L.-S. Didier, “Table-based division by small integer constants,” in Interna-

tional Symposium on Applied Reconfigurable Computing. Springer, 2012, pp. 53–63.

53

http://www.scipy.org/

	List of Tables
	List of Figures
	List of Source Codes
	Introduction
	High-Level Synthesis
	Introduction to SOAP
	Objective

	Background
	Floating-Point Arithmetic
	Accuracy Issues

	Structural Optimisation of Arithmetic Programs (SOAP)
	Estimating Area
	Estimating Error
	Expression Transformation
	An Example

	Floating-Point Fused Arithmetic
	Three-Input Adder
	Fused Multiply-Add
	Algorithmic Alternatives

	Requirements

	Analysis and Design
	Three-Input Adder
	Area
	Error
	Transformations

	Fused Multiply-Add
	Area
	Error
	Transformations

	Constant Multiplier
	Area
	Error
	Transformations

	Implementation
	Adding Operators

	Testing
	Three-Input Adder
	Fused Multiply-Add
	The Single-Use FMA

	Constant Multiplier

	Results
	Single-Precision, Multiple-Use FMA
	Single- and Double-Precision, Single- and Multiple-Use FMA

	Evaluation
	Against Varying Precision
	Against SOAP Version 3

	Conclusions
	Further Work

	User Guide
	Installing
	Usage

	Benchmarks
	PolyBench
	Livermore Loops

	Bibliography

